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1. INTRODUCTION 

The analytical as well as numerical studies of the 
one-dimensional Schrijdinger equation for polynomial 
potentials, 

mw) = W(X)> lim $(x) = 0, X&(-co, co), (1.1) 
r+Trn 

have been of considerable interest for many years. Here, H 
stands for the Hamiltonian of the system 

H= - $+ V(x), V(x) = ‘c” u;x’, 
,=I 

M> 1, V2M > O, (1.2) 

where e(x), E, and the vi are the wavefunction, energy 
eigenvalue, and potential coefficients, respectively. Espe- 
cially, the problem of generalized anharmonic oscillators 
V(x) = x2 + /?x~~, m = 2, 3, . . . . is the most studied system of 
this kind. 

Perturbative, variational, numerical, recursive, or 
iterative techniques, as well as Hill determinant and 
asymptotic WKB methods, are widely employed in the 
works on anharmonic oscillators [l-9]. It may be proven 
that the ground state energy perturbation series has a zero 
radius of convergence due to an essential singularity at the 
origin in the complex anharmonicity constant, p, plane [7]. 
So the perturbational studies emphasize the resummation of 
the divergent Rayleigh-Schrodinger series by using Pade 
and Pade-Bore1 summability methods [S, 71. 

The general tendency in the other methods is to try to 
obtain the best approximate wavefunction. For this pur- 
pose, it is useful to consider the asymptotic behaviour of the 
wavefunction tj(x) for large values of x, the determination 
of which can be accomplished by writing J/(x) = exp( - cxp). 
If this expression is substituted into (1.1 ), the result is 

2M 

-~2c2x2P~2+p(p-1)cxP~2+ c u,x’=E. (1.3) 
i=I 
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In order that the leading terms cancel each other out, 
it is necessary that p = M + 1 and (M + 1)’ c2 = vZM. 
Since the wavefunction must vanish for x -+ f cc, we 
deduce that the required asymptotic form is t&x) - 
exp( -(G/M+ 1) x”+’ ). In a general situation it is no 
more difficult to determine the asymptotic behaviour of a 
wavefunction. But the difficult point is to construct a 
complete orthonormal set having the specified behaviour 
[lo]. In the case, where M is an even number, there is an 
additional complication because of the appearance of the 
“unnatural” function 1x1 M + ’ in the exponent. Only in the 
harmonic oscillator case, for which M = 1 and V(x) = x’, 
there is a complete orthonormal set available in the 
literature as the exact solution of the problem. 

With this general outline of constructing the basis func- 
tions, in the aforementioned methods, especially in the 
variational schemes, the wavefunction is postulated to be of 
the form [2,4] 

t)(x) = exp( - ix’) f a,~“. (1.4) 
n=O 

The presence of integration in variational calculations 
makes it almost impossible to use a well defined trial func- 
tion that characterizes the true asymptotic form of the 
wavefunction. It is noteworthy to indicate that in Ref. [ 1 ] 
an integration-free method, namely the Wronskian 
approach, has been devised. Integration-free character 
of this method allows one to construct a complicated 
trial function which satisfactorily reflects the particular 
behaviour of the exact wavefunction in question. Actually, 
extremely accurate numerical results have been obtained for 
the energy eigenvalues of quartic, x2 + j?x4, and sextic, 
x2 + /?x6, oscillators in the entire range of /? by introducting 
a novel trial function. 

In this work, we are interested solely in the discrete spec- 
trum, and we propose an alternative approach for the deter- 
mination of the spectral points of the Schrodinger equation. 
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We assume that the boundaries are at finite points and 
modify the problem as follows: 

Hl)(x)=El)(x),lj-cr)=l+b(a)=O, XE[-cc,oc]. (1.5) 

Thus, we deal with the eigenvalue problem of a polynomial 
oscillator bounded by infinitely high potentials located at 
the points TCL This type of model, on the other hand, has 
been applied in several fields [ 1 l-21 1. The standard works 
on the bounded oscillators are due to Vawter, who used 
both a WKB and a series method [ll, 121. Among the 
others, the hypervirial perturbative method is widely used 
for the investigation of enclosed quantum mechanical 
systems [ 14-181. 

The principle purpose of the present article is to compute 
the variances accurately between the spectrum of the usual 
problem (1.1) and the spectrum of the system (1.5) when the 
wavefunction obeys Dirichlet boundary conditions. The 
boundary value CI in (1.5) is said to be a parameter which 
characterizes the boundedness effect on the spectrum of the 
eigenvalue problem. Hence the numerical experiments are 
performed for various values of CL It may be noted that the 
significant advantage of this model is the possibility of the 
construction of an orthonormal basis set which is not 
restricted to a particular potential, but also valid for a wide 
class of both symmetrical and asymmetrical polynomial 
oscillators. Such a basis set is derived from the exact solu- 
tion of the eigenvalue problem 

-F”(X) = S(x), x E [a, bl, F(a) = F(b) = 0 (1.6) 

and used in a standard variational scheme. It is not a 
surprise that the eigenfunction solution in terms of the 
trigonometric functions of this well known elementary 
problem has previously been proposed for treating similar 
kind of problems [20,21]. But the present strategy, which 
tries to systematically investigate the boundedness effect 
and shows numerically the power of the trigonometric basis 
sets for obtaining the spectrum of unbounded problems 
with any desired accuracy, seems to be a new approach. 

This paper is organized as follows: The evaluation of the 
matrix elements of the resulting matrix eigenvalue problem 
is given in Section 2 for a general polynomial potential. The 
method is then applied to two particular systems. The 
significant aspects of the present results are pointed out in 
the last section, which also includes certain remarks and 
discussions. 

2. CONSTRUCTION OF THE VARIATIONAL MATRIX 

Instead of taking the symmetric interval in (1.5), it is first 
useful to deal with the more general case where x E [a, 61. 
Now with the transformation of variable from x to r, 

5 = (x - a)lk h = (b - a)/~, 

the Schrodinger equation becomes 

-~+h’Y(T)]~(:)=h’~~(C), W')=rl/(n)=O, 
(2.2) 

wherein the potential is altered to 

V(t)= ‘2 i V& v,, = 
0 

’ hJCiv,. (2.3) 
r=l j=o .i 

If we consider the limiting case of h + 0, we then arrive 
at the simple boundary value problem -F”(t) = 21;(t), 
F(0) = F’(n) = 0 whose orthonormalized eigenfunctions can 
easily be found as follows: 

k(5) = fi sin mt, m = 1, 2, . . . . 

So we may choose the trial function of the form 

(2.4) 

$A<)= f fm4,(5), (2.5) 
m=I 

in which thef, are the linear combination coefficients. With 
the application of the variational principle, we therefore 
obtain the matrix eigenvalue problem 

f (H,,-h*.B,,)f,=O, m= 1, 2, . . . . (2.6) 
n=l 

where 6,, is Kronecker’s delta. We call H,, the variational 
matrix which is obtained such that 

H,,=m26,,+h2 *f i Vii[R~!~n-R~)+,]. (2.7) 
;=, j=o 

The integrals Rjl), 

(2.8) 

can be evaluated by means of integration by parts. 
It is clear that a pure symmetrical problem is under 

investigation if the problem is defined on a symmetric inter- 
val and the potential is an even polynomial in x. In such a 
case we may separate the set of eigenlevels into two subsets 
which contain even and odd functions of x, respectively, i.e., 
even and odd parity states. As a symmetrical problem, we 
deal with the even parity states of the quartic oscillator, 
V(x) = x2 + /?x4, at the numerical side of this work for the 
purpose of comparing computational results, especially 
with those of Tageli and Demiralp [ 11, who have published 
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extremely accurate results for the infinite interval version of 
this problem. To this end, we use the same values of the 
anharmonicity constant /I and take care of only the ground 
state energies in our numerical table. The first 10 excited 
state eigenvalues can be calculated without any loss of 
accuracy. However, results are not presented due to table 
economization. Therefore Table II includes ground state 
energies as a function of /I and a, and the results taken from 
theRef. [l]forx=a. 

We consider as a second numerical example the asym- 
metrical potential of the form V(x) = v2x2 + v3x3 -t uqx4 
which has two minima if 90: > 32v2v4. This type of 
oscillator is called a double-well oscillator and is of practical 
interest for protonic movement of hydrogen-bonded 
systems [22]. We solve this problem for particular poten- 
tials where {vZ, v3, v4} = { -7, 4, I} and {v2, v3, v4) = 
( - 1, 3, 1 }. Such potentials were considered by Somorjai 
and Hornig [22]. The potential {v2, v3, v4} = { -7, f, 1 1 
was also investigated numerically by Killingbeck [23] and 
by Diaz et al. [24]. Numerical calculations are made for a 
symmetric interval [ - c(, a], and results for the ground and 
first excited states are reported in Table III as a function 
of CL 

3. CONCLUDING REMARKS 

A rather simple and easily applicable Rayleigh-Ritz 
variational method has been presented to solve the 
Schrodinger equation with an arbitrary polynomial poten- 
tial. It is deduced numerically that the usual requirement of 
the wavefunction vanishing at infinity may be modified. 
Indeed, the specimen calculations reported in this work 
show that it is always possible to find such an CY value for 
which the results lit accurately to the results of z = cc. 

It is noteworthy that in numerical computations we used 
quadruple precision arithmetic on a VAX-l l/780 computer 
(34 digits) by truncating the results to 30 significant 
digits. The N values in numerical tables for which the corre- 
sponding eigenvalue stabilizes demonstrate the number 
of basis elements required. The accuracy of the results is 
checked by systematically increasing the dimension N, and 
the maximum uncertainty in the tabulated eigenvalues is 
) 1 in the last figure. 

One would expect that the asymptotic energy would be 
reached if V(a) $ E. The a value for which the boundedness 
effect on the low-lying states is less than E = 10 -30 may be 
called as the critical distance, say a,,. That is, the low-lying 
state energies are equal to those of a = co within 30-digit 
accuracy when a tends to a,,. In Table I such a,, values 
for the quartic anharmonic oscillator are presented as a 
function of 8. 

It is clearly shown from the table that the distance a at 
which the asymptotic energy reached will necessarily 
decrease as /I increases. This is due to the fact that, as p 

TABLE I 

The Critical Distances of (x as a Function of/j 

8: 0 0.01 0.1 1 IO 100 1000 
LYcr : 10 10 7.5 5 3.5 2.5 I ‘3 

increases, the wavefunction is contracted. However, we 
should have looked for a,, values, which will be greater than 
the values given in Table I, for the computation of the 
energy states with higher quantum numbers. Therefore, the 
a,, depends on the quantum number n, the desired accuracy 
for the eigenvalues E, and the particular asymptotic 
behaviour of the potential function under consideration. 

A very interesting regularity can be shown from Table II 
that the method is most rapidly convergent at the critical 
distances of a, and 30 significant figures have been obtained 
by using 30-35 basis elements. Since there is not a 
remarkable change in the number of basis elements required 
as p varies from 0 to 1000, we suggest that the present algo- 
rithm is extremely accurate in the whole range of /I. Slowly 
convergent properties are observed only when a 4 ~1,~. In 

TABLE II 

Ground State Eigenvalues of the Quartic Anharmonic Oscillator 
V(x) = x2 + fix4 for Various c(, as a Function of fl 

80 
70 
30 

Exact 

80 2.600 911 846 801 122 
100 1.06528550954371844952589 

30 1.06528550954371768885709162879 
Ref. [1] 1.065285 509 543 717688857091628 79 

0 1 
5 

10 
cc 

0.1 1 
5 
1.5 
m 

1 1 
5 

10 
m 

10 1 
3.5 
5 
m 

100 1 
2.5 
5 
cc 

1000 1 
1.75 
5 
cc 

Pa N 

2.596 919 664 064 113 
1.000000000133434264 
1.oooooooooooooooooooooooaooooo 

Energy 
--.. __--- -. ~~~~ 

80 2.636 580 202 486 086 
30 1.39235164153029185565750787661 
55 1.39235164153029185565750787661 

Ref [1] 1.39235164153029185565750787661 

130 2.969 398 036 327 419 
30 2.44917407211838691826879390619 
45 2.44917407211838691826879390619 

Ref. [l] 2.449 174072 118386918268793906 19 

160 
35 
65 

Ref. Cl] 

5.014 584 738 023 400 
4.99941754513758782929463203735 
4.99941754513758782929463203735 
4.99941754513758782929463203735 

80 10.639 788 734 085 487 
35 10.6397887113280460636220426694 
90 10.639788711328@460636220426694 

Ref. [l] 10.6397887113280460636220426694 
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TABLE III 

The Ground and the First Excited State Eigenvalues of 
Asymmetrical Double-Well Oscillators as a Function of dl 

Potential a n N Energy 

-7x2+Lx3+,4 
2 

5 1 170-12.258798853577533406063612270 
2 170 -6.0456875237720873272575020824 

7.5 1 100 -12.258 798 853 577 533 406 065 133 150 7 
2 100 -6.045 687 523 112 087 327 257 522 452 00 

10 1 140 -12.258798853577533406065 133 1506 
2 145 -6.045 687 523 772 087 327 257 522 451 99 

-x’+3xZ+x4 5 1 70 -10.619 965 590 991627 
2 70 -4.337 045 060 252 337 65 

7.5 1 100 -10.619 965 590 991272 864 401 501804 8 
2 100 -4.37704506025255393854225853799 

10 1 130 -10.619 965 590 991272 864 401501804 8 
2 130 -4.37704506025255393854225853799 

such cases, eigenvalues accurate approximately to 10 digits 
rapidly stabilize, but if more accurate results are sought by 
increasing N, a dramatic slowing down of convergence 
occurs. So our method fails to yield the same accuracy for CI 
values which are not in the vicinity of a,,. In the other case 
when a $ a,,, although it is necessary to provide larger 
number of basis elements, the same accuracy and certainly 
the same results with those of a = a,, can be obtained. For 
this reason the estimation of a,, is an important aspect of the 
method in order to deal with a reasonable truncation 
order N. 

For the double-well case, we observe similarly from 
Table III that the eigenvalues remain almost unchanged 
when a B 7.5. Therefore, the boundedness effect can be 
neglected. Because of the asymmetrical structure of the 
potential we cannot separate even and odd parity states, 
which results in using a larger number of basis elements 
than the symmetrical case. We may, however, state that the 
eigenvalues of double-well oscillators with such an accuracy 
have been computed for the first time. 

Consequently, our method may be applied mainly for two 
purposes. First, we can use it to approach the energy spec- 
trum of the usual problem defined on the open interval 
( -co, cc ) by estimating its critical distance acr. Second, we 
can use it to solve enclosed quantum mechanical systems 
both for symmetrical and asymmetrical finite intervals. 

Without giving an explicit table, we have shown that 
calculated results for bounded harmonic oscillator improve 
those of the other works [ 11, 12, 151, but agree to the first 
few digits. Another important feature of this method is the 
applicability of an arbitrary polynomial oscillator. Only two 
examples, however, are given here, in order not to overfill 
the content of the paper with tabular material anymore. 
Further results for some interesting potentials will be 
reported in due course. For instance, the symmetrical 
two-well oscillator V(x) = -x2 + /Ix4 and the symmetrical 
three-well oscillator V(x) = uZxz - uqx4 + u&, 
vi >, 4v, v6, are presently under investigation. 

where 
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